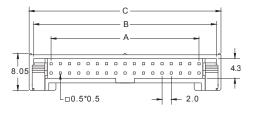
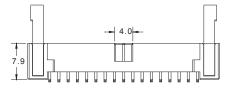
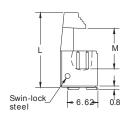
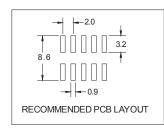
D/ ROW TOP ENTRY SMT SHRUNK HEADER


General Features


- Available in 8, 10, 12, 14, 16, 20, 22, 24, 26, 30, 34, 40, 44, 50 and 68 circuits
- Mates with IDC connectors 2039 and 2040 series
- Gold plated 0.50 mm square pin
- Fully shrouded with polarized slot
- Long and short latch levers on the side

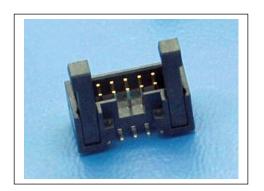

Materials


- Insulator: Nylon 66, glass reinforced, rated UL 94V-0
- Terminal: Brass
- Operating temperature. -25°C to +85°C
- RoHS compliant

Dimension Information

DIMENSIONS	L	М
Long latch	19.00	11.57
Short latch	16.20	8.75

Electrical Features


- Voltage rating: < 250V
- Current rating: < 1 A
- Contact resistance: < 30 mΩ
- Dielectric withstanding Voltage: 500 V AC/minute

ONEXCON

Insulation resistance: >1000 MΩ

Mechanical Features

• Durability: 50 Cycles

Ordering Information:		
<u>4449</u> - <u>T</u> - <u>XX</u> - <u>S</u>		
1 2 3 4		
1. Connector Series		
2. (T) Contact Plating		
• T = 2. Tin plated		
• T = 3. Gold flash over nickel		
Recommended Finish		
• $T = 5.15\mu$ " gold over nickel		
• $T = 6.30\mu$ " gold over nickel		
3. (XX) Number of circuits		
 Available in 8 through 68 circuits 		
4. (S) Latch Type		
• S = 1. Short latch		
● S = 2. Long latch		

Dimensions: (In mm.)

A =
$$2.00\left(\frac{XX}{2} - 1\right)$$
 B = $2.00\left(\frac{XX}{2}\right) + 5.50$ C = $2.00\left(\frac{XX}{2}\right) + 7.50$

(XX) = Number of circuits